Global_Environmental_Research_Vol.27No.1
63/80

Karanasiou, A., Alastuey, A., Amato, F., Renzi, M., Stafoggia, M., Tobias, A., Reche, C., Forastiere, F., Gumy, S., Mudu, P. and Querol, X. (2021) Short-term health effects from outdoor exposure to biomass burning emissions: A review. Science of The Total Environment, 781: 146739. https://doi.org/10.1016/j.scitotenv. 2021.146739 Khodmanee, S. and Amnuaylojaroen, T. (2021) Impact of biomass burning on ozone, carbon monoxide, and nitrogen dioxide in Northern Thailand. Frontiers in Environmental Science, 9: 641877. https://doi.org/10.3389/fenvs.2021.641877 Kollanus, V., Prank, M., Gens, A., Soares, J., Vira, J., Kukkonen, J., Sofiev, M., Salonen, R.O. and Lanki, T. (2017) Mortality due to vegetation in Europe— Assessment for the years 2005 and 2008. Environmental Health Perspectives, 125(1): 30–37. https://doi.org/10.1289/ EHP194 Koman, P.D., Billmire, M., Baker, K.R., Carter, J.M., Thelen, B.J., French, N.H.F. and Bell, S.A. (2022) Using wildland fire smoke modeling data in gerontological health research (California, 2007–2018). Science of The Total Environment, 838, 156403. https://doi.org/10.1016/j.scitotenv.2022.156403 Le, H.A., Khoi, N.Q. and Mallick, J. (2022) Integrated emission inventory and modelling to assess the distribution of particulate matters from rice straw open burning in Hanoi, Vietnam. Atmospheric Pollution Research, 13(5): 101416. https://doi.org/ 10.1016/j.apr.2022.101416 Linares, C., Carmona, R., Salvador, P. and Díaz, J. (2018) Impact on mortality of biomass combustion from wildfires in Spain: A regional analysis. Science of The Total Environment, 622–623: 547–555. https://doi.org/10.1016/j.scitotenv.2017.11.321 Liu, J.C., Pereira, G., Uhl, S.A., Bravo, M.A. and Bell, M.L. (2015) A systematic review of the physical health impacts from non-occupational exposure to wildfire smoke. Environmental Research, 136: 120–132. https://doi.org/10.1016/j.envres.2014. 10.015 Magzamen, S., Gan, R.W., Liu, J., O’Dell, K., Ford, B., Berg, K., Bol, K., Wilson, A., Fischer, E.V. and Pierce, J.R. (2021) Differential cardiopulmonary health impacts of local and long‐range transport of wildfire e2020GH000330. https://doi.org/10.1029/2020GH000330 Martin, R.V., Brauer, M., Van Donkelaar, A., Shaddick, G., Narain, U. and Dey, S. (2019) No one knows which city has the highest particulate matter. Atmospheric concentration Environment: X(3): 100040. https://doi.org/10.1016/j.aeaoa. 2019.100040 Mijling, B. and Van Der A, R.J. (2012) Using daily satellite observations to estimate emissions of short‐lived air pollutants on a mesoscopic scale. Journal of Geophysical Research: Atmospheres, 117(D17): 2012JD017817. https://doi.org/10.1029/ 2012JD017817 Monge-Sanz, B.M. and Chipperfield, M.P. (2006). Chemical Transport Modelling. ECMWF/GEO Workshop on Atmospheric https://www.ecmwf.int/sites/default/files/elibrary/ Reanalysis. 2006/11221-chemical-transport-modelling.pdf 14 November 2023) Mueller, W., Tantrakarnapa, K., Johnston, H.J., Loh, M., Steinle, S., Vardoulakis, S. and Cherrie, J.W. (2021) Exposure to ambient particulate matter and biomass burning during pregnancy: Associations with birth weight in Thailand. Journal of Exposure Science & Environmental Epidemiology, 31(4): 672–682. https://doi.org/10.1038/s41370-021-00295-8 NASA. (n.d.). MODIS Specifications. https://modis.gsfc.nasa.gov/ Oliveri Conti, G., Heibati, B., Kloog, I., Fiore, M. and Ferrante, M. (2017). A review of AirQ Models and their applications for review. Air Quality, Atmosphere & Health, 13(1): 35–75. https://doi.org/10.1007/s11869-019-00771-z fire-originated PM2.5 smoke. GeoHealth, 5(3): fine of about/specifications.php Review on Exposure Assessment of Biomass Burning exposure (accessed forecasting the air pollution health outcomes. Environmental Science 6426–6445. https://doi.org/10.1007/s11356-016-8180-1 O’Neill, S.M., Diao, M., Raffuse, S., Al-Hamdan, M., Barik, M., Jia, Y., Reid, S., Zou, Y., Tong, D., West, J.J., Wilkins, J., Marsha, A., Freedman, F., Vargo, J., Larkin, N.K., Alvarado, E. and Loesche, P. (2021) A multi-analysis approach for estimating regional health impacts from the 2017 Northern California wildfires. Journal of the Air & Waste Management Association, 71(7): 791–814. https://doi.org/10.1080/10962247.2021.1891994 OpenAQ (n.d.) OpenAQ. https://explore.openaq.org/ Othman, M., Latif, M.T., Hamid, H.H.A., Uning, R., Khumsaeng, T., Phairuang, W., Daud, Z., Idris, J., Sofwan, N.M. and Lung, S.-C.C. (2022) Spatial–temporal variability and health impact of particulate matter during a 2019–2020 biomass burning event in Southeast 7630. https://doi.org/10.1038/s41598-022-11409-z Owili, P., Lien, W.-H., Muga, M. and Lin, T.-H. (2017) The Associations between Types of Ambient PM2.5 and Under-Five and Maternal Mortality in Africa. International Journal of Environmental Research and Public Health, 14(4): 359. https://doi.org/10.3390/ijerph14040359 Pennington, A.F., Strickland, M.J., Gass, K., Klein, M., Sarnat, S.E., Tolbert, P.E., Balachandran, S., Chang, H. H., Russell, A.G., Mulholland, J.A. and Darrow, L.A. (2019) Source-apportioned PM2.5 and cardiorespiratory emergency department visits: Accounting for source contribution uncertainty. Epidemiology, 30(6): 789–798. https://doi.org/10.1097/EDE.0000000000001089 Piersanti, A., Vitali, L., Righini, G., Cremona, G. and Ciancarella, L. (2015) Spatial representativeness of air quality monitoring stations: A grid model based approach. Atmospheric Pollution Research, https://doi.org/10.1016/j.apr. 2015.04.005 Pothirat, C., Chaiwong, W., Liwsrisakun, C., Bumroongkit, C., Deesomchok, A., Theerakittikul, T., Limsukon, A., Tajarernmuang, P. and Phetsuk, N. (2021) The short-term associations of particular matters on non-accidental mortality and causes of death in Chiang Mai, Thailand: A time series analysis of study Environmental Health Research, 31(5), 538–547. https://doi.org/ 10.1080/09603123.2019.1673883 Reddington, C.L., Conibear, L., Robinson, S., Knote, C., Arnold, S.R. and Spracklen, D.V. (2021) Air pollution from forest and vegetation fires in Southeast Asia disproportionately impacts the poor. GeoHealth, 5(9): e2021GH000418. https://doi.org/10.1029/ 2021GH000418 Reid, C.E., Jerrett, M., Petersen, M.L., Pfister, G.G., Morefield, P.E., Tager, I.B., Raffuse, S.M. and Balmes, J.R. (2015) Spatiotemporal prediction of fine particulate matter during the 2008 Northern California wildfires using machine learning. Environmental Science & Technology, 49(6): 3887–3896. https://doi.org/10.1021/ es505846r Ren, Y., Shen, G., Shen, H., Zhong, Q., Xu, H., Meng, W., Zhang, W., Yu, X., Yun, X., Luo, Z., Chen, Y., Li, B., Cheng, H., Zhu, D. and Tao, S. (2021) Contributions of biomass burning to global and regional SO2 emissions. Atmospheric Research, 260: 105709. https://doi.org/10.1016/j.atmosres.2021.105709 Sannigrahi, S., Pilla, F., Maiti, A., Bar, S., Bhatt, S., Kaparwan, A., Zhang, Q., Keesstra, S. and Cerda, A. (2022) Examining the status of forest fire emission in 2020 and its connection to COVID-19 incidents the United States. Environmental Research, 210: 112818. https://doi.org/10.1016/ j.envres.2022.112818 Sheldon, T.L. and Sankaran, C. (2017) The impact of Indonesian forest fires on Singaporean pollution and health. American Economic Review, 107(5): 526–529. https://doi.org/10.1257/ and Pollution Research, Scientific Asia. 953–960. 6(6): International 2016–2018. between in West Coast regions of 24(7): Reports, 12(1): Journal 57

元のページ  ../index.html#63

このブックを見る