34 Daellenbach, K.R., Bozzetti, C., Křepelová, A., Canonaco, F., Wolf, R., Zotter, P., Fermo, P., Crippa, M., Slowik, J.G., Sosedova, Y., Zhang, Y., Huang, R.J., Poulain, L., Szidat, S., Baltensperger, U., El Haddad, I. and Prévôt, A.S.H. (2016) Characterization and source apportionment of organic aerosol using offline aerosol mass spectrometry. Atmospheric Measurement Techniques, 9(1): 23−39. Fujitani, Y., Furuyama, A., Hayashi, M., Hagino, H. and Kajino, M. (2023) Assessing oxidative stress induction ability and oxidative potential of PM2.5 in cities in eastern and western Japan. Chemosphere, 324: 138308. Fujitani, Y., Fushimi, A., Saitoh, K., Sato, K., Takami, A., Kondo, Y., Tanabe, K. and Kobayashi, S. (2020) Mid carbon (C6+-C29+) in refractory black carbon aerosols is a potential tracer of open burning of rice straw: Insights from atmospheric observation and emission source studies. Atmospheric Environment, 238: 117729. Fujitani, Y., Takahashi, K., Saitoh, K., Fushimi, A., Hasegawa, S., Kondo, Y., Tanabe, K., Takami, A. and Kobayashi, S. (2021) Contribution of industrial and traffic emissions to ultrafine, fine, coarse particles in the vicinity of industrial areas in Japan. Environmental Advances, 5: 100101. Fushimi, A., Nakajima, D., Furuyama, A., Suzuki, G., Ito, T., Sato, K., Fujitani, Y., Kondo, Y., Yoshino, A., Ramasamy, S., Schauer, J.J., Fu, P., Takahashi, Y., Saitoh, K., Saito, S. and Takami, A. (2021) Source contributions to multiple toxic potentials of atmospheric organic aerosols. Science of The Total Environment, 773: 145614. Fushimi, A., Saitoh, K., Hayashi, K., Ono, K., Fujitani, Y., Villalobos, A.M., Shelton, B.R., Takami, A., Tanabe, K. and Schauer, J.J. (2017) Chemical characterization and oxidative potential of particles emitted from open burning of cereal straws and rice husk under flaming and smoldering conditions. Atmospheric Environment, 163: 118−127. Hellack, B., Nickel, C., Albrecht, C., Kuhlbusch, T.A.J., Boland, S., Baeza-Squiban, A., Wohlleben, W. and Schins, R.P.F. (2017) Analytical methods the oxidative potential of nanoparticles: a review. Environmental Science: Nano, 4(10): 1920−1934. Hoffer, A., Gelencser, A., Guyon, P., Kiss, G., Schmid, O., Frank, G.P., Artaxo, P. and Andreae, M.O. (2006) Optical properties of humic-like substances (HULIS) in biomass-burning aerosols. Atmospheric Chemistry and Physics, 6: 3563−3570. Johnston, F.H., Henderson, S.B., Chen, Y., Randerson, J.T., Marlier, M., Defries, R.S., Kinney, P., Bowman, D.M. and Brauer, M. (2012) Estimated global mortality attributable to smoke from landscape fires. Environ Health Perspect, 120(5): 695−701. Kaneyasu, N. (2010) Development of PM2.5 impactor for the conventional high-volume air sampler. Journal of Japan Society for Atmospheric Environment / Taiki Kankyo Gakkaishi, 45(4): 171−174. Kannari, A., Tonooka, Y., Baba, T. and Murano, K. (2007) Development of multiple-species 1km×1km resolution hourly basis emissions inventory for Japan. Atmospheric Environment, 41(16): 3428−3439. Kumagai, Y., Koide, S., Taguchi, K., Endo, A., Nakai, Y., Yoshikawa, T. and Shimojo, N. (2002) Oxidation of proximal protein sulfhydryls by phenanthraquinone, a component of diesel exhaust particles. Chemical Research in Toxicology, 15(4): 483−489. Li, N., Sioutas, C., Cho, A., Schmitz, D., Misra, C., Sempf, J., Wang, M. Y., Oberley, T., Froines, J. and Nel, A. (2003) Ultrafine particulate pollutants induce oxidative stress and mitochondrial damage. Environmental Health Perspectives, 111 (4): 455−460. Lin, P. and Yu, J.Z. (2011) Generation of reactive oxygen species mediated by humic-like substances in atmospheric aerosols. Environmental Science & Technology, 45(24): 10362−10368. to assess Y. FUJITANI et al. Mason, B. (1966) Principles of geochemistry, third edition. New York, London, Sydney, John Wiley & Sons Inc. Myhre, G., Shindell, D., Bréon, F.-M., Collins, W., Fuglestvedt, J. et al. (2013) Anthropogenic and natural radiative forcing. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 8: 659–740. Shiraiwa, M., Ueda, K., Pozzer, A., Lammel, G., Kampf, C.J., Fushimi, A., Enami, S., Arangio, A.M., Frohlich-Nowoisky, J., Fujitani, Y., Furuyama, A., Lakey, P.S.J., Lelieveld, J., Lucas, K., Morino, Y., Poschl, U., Takahama, S., Takami, A., Tong, H., Weber, B., Yoshino, A. and Sato, K. (2017) Aerosol health effects from molecular to global scales. Environmental Science & Technology, 51(23): 13545−13567. Takahashi, K., Fushimi, A., Morino, Y., Iijima, A., Yonemochi, S.-I., Hayami, H., Hasegawa, S., Tanabe, K. and Kobayash, S. (2011) Source apportionment of ambient fine particle using a receptor model combined with radiocarbon content in Northern Kanto area. Journal of Japan Society for Atmospheric Environment / Taiki Kankyo Gakkaishi, 46(3): 156−163. Tomiyama, H., Tanabe, K., Chatani, S., Kobayashi, S., Fujitani, Y., Furuyama, A., Sato, K., Fushimi, A., Kondo, Y., Sugata, S., Morino, Y., Hayasaki, M., Oguma, H., Ide, R., Kusaka, H. and Takami, A. (2017) Observation for temporal open burning frequency and estimation for daily emissions caused by open burning of rice residue. Journal of Japan Society for Atmospheric Environment /Taiki Kankyo Gakkaishi, 52(4): 105−117. U.S. EPA (2019) Integrated Science Assessment for Particulate Matter. isa-particulate-matter (accessed 4 July 2023) Verma, V., Fang, T., Xu, L., Peltier, R.E., Russell, A.G., Ng, N.L. and Weber, R.J. (2015) Organic aerosols associated with the generation of reactive oxygen species (ROS) by water-soluble PM2.5. Environmental Science & Technology, 49(7): 4646−4656. Verma, V., Rico-Martinez, R., Kotra, N., King, L., Liu, J.M., Snell, T.W. and Weber, R.J. (2012) Contribution of water-soluble and insoluble their hydrophobic/hydrophilic subfractions to the reactive oxygen species-generating potential of fine ambient aerosols. Environmental Science & Technology, 46(20): 11384−11392. Weber, S., Uzu, G., Calas, A., Chevrier, F., Besombes, J.L., Charron, A., Salameh, D., Jezek, I., Mocnik, G. and Jaffrezo, J.L. (2018) An apportionment method for the oxidative potential of atmospheric particulate matter sources: application to a one-year study in Chamonix, France. Atmospheric Chemistry and Physics, 18(13): 9617−9629. components and Yuji FUJITANI Yuji Fujitani is a chief senior researcher at the National Institute for Environmental Studies (NIES). He completed his PhD (Engineering) in Environment and Resource Engineering at the Graduate School of Engineering, Hokkaido University, Japan. His current research interests include the development of protocols for small animal whole-body inhalation exposure experiments and air-liquid interface cellular exposure methods for micro- to ultrafine-particles to assess particle toxicities. He also conducts toxicity-related particle characterization, exposure assessments and source attribution for atmospheric aerosols, as well as their combined analyses.

元のページ  ../index.html#40