Global_Environmental_Research_Vol.27No.1
31/80

He, M., Ichinose, T., Yoshida, Y., Arashidani, K., Yoshida, S., Takano, H., Sun, G. and Shibamoto, T. (2017) Urban PM2.5 exacerbates allergic inflammation in the murine lung via a TLR2/TLR4/MyD88-signaling pathway. Scientific Reports, 7: 11027. http://doi.org/10.1038/s41598-017-11471-y He, X., Zhang, L., Hu, L., Liu, S., Xiong, A., Wang, J., Xiong, Y. and Li, G. (2021) PM2.5 Aggravated OVA-induced epithelial tight junction disruption associated via death domain-dependent apoptosis in asthmatic mice. Journal of Asthma and Allergy, 14:1411−1423. http://doi.org/10.2147/ JAA.S335590 Heyder, J., Gebhart, J., Rudolf, G., Schiller, C.F. and Stahlhofen, W. (1986) Deposition of particles in the human respiratory tract in the size range 0.005–15 m. Journal of Aerosol Science, 17: 811−825. Hoffmann, M., Kleine-Weber, H., Schroeder, S., Kruger, N., Herrler, T., Erichsen, S., Schiergens, T.S., Herrler, G., Wu, N.H., Nitsche, A., Muller, M.A., Drosten, C. and Pohlmann, S. (2020) SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell, 181: 271−280. e8. Honda, A., Fukushima, W., Oishi, M., Tsuji, K., Sawahara, T., Hayashi, T., Kudo, H., Kashima, Y., Takahashi, K., Sasaki, H., Ueda, K. and Takano, H. (2017) effects of components of PM2.5 collected in Japan on the respiratory and immune systems. International Journal of Toxicology, 36: 153–164. http://doi.org/ 10.1177/1091581816682224 Honda, A., Inoue, K-i., Tamura, S., Tanaka, M., Wang, Z., Tanaka, T., Hirai, S., Okuda, T., Ueda, K. and Takano, H. (2022) Effects of streamer discharge on PM2.5 containing endotoxins and polyaromatic hydrocarbons and their biological responses in vitro. International Journal of Molecular Sciences, 23: 15891. https://doi.org/10.3390/ijms232415891 Honda, A., Murayama, R., Matsuda, Y., Tsuji, K., Sawahara, T., Fukushima, W., Hayashi, T., Shimada, A. and Takano, H. (2014) Effects of hydrogen peroxide on mucociliary transport in human airway epithelial cells. Toxicology Mechanisms and Methods, 24: 191−195. http://doi.org/10.3109/15376516.2013.876136 Honda, A., Okuda, T., Nagao, M., Miyasaka, N., Tanaka, M. and Takano, H. (2021) PM2.5 collected using cyclonic separation causes stronger biological responses than that collected using a conventional filtration method. Environmental Research, 198: 110490. http://doi.org/10.1016/j.envres.2020.110490 Honda, A., Inoue, K. I., Takai, S., Kameda, T., Ueda, K. and Takano, H. (2022) Effects of oxidized pyrenes on the biological responses in the human bronchial epithelial cells. Applied Sciences, 12: 9664. Honda, A., Inoue, K-i, Higashihara, M., Ichinose, T., Ueda, K. and Takano, H. (2023) Differential pattern of cell death and ROS production in human airway epithelial cells exposed to quinones combined with Heated-PM2.5 and/or Asian sand dust. International Journal of Molecular Sciences, 24: 10544. Jackson, C.B., Farzan, M., Chen, B. and Choe, H. (2022) Mechanisms of SARS-CoV-2 entry into cells. Nature Reviews Molecular Cell Biology, 23: 3−20. Ko, U.W. and Kyung, S.Y. (2022) Adverse effects of air pollution on pulmonary diseases. Tuberculosis and Respiratory Diseases (Seoul). 85: 313−319. http://doi.org/10.4046/trd.2022.0116 Koike, E. and Kobayashi, T. (2005) Organic extract of diesel exhaust particles stimulates expression of Ia and costimulatory molecules associated with antigen presentation in rat peripheral blood monocytes but not in alveolar macrophages. Toxicology and Applied Pharmacology, 209: 277−285. http://doi.org/10.1016/ j.taap.2005.04.017 Lee, H.S., Park, D.E., Lee, J.W., Kim, H.N., Song, W.J., Park, H.W. can exacerbate murine lung eosinophilia. Inhalation Toxicology, 27: 287−299. http://doi.org/10.3109/08958378.2015.1045051 through fas Mechanisms by which PM worsens respiratory disease and Cho, S.H. (2019) Critical role of in development of asthma promoted by cigarette smoke. Journal of Molecular Medicine (Berlin), 97: 937–949. http://doi.org/10.1007/ s00109-019-01768-y Levine, S.J., Larivée, P., Logun, C., Angus, C.W. and Shelhamer, J.H. (1993) Corticosteroids differentially regulate secretion of IL-6, IL-8, and G-CSF by a human bronchial epithelial cell line. The American Journal of Physiology, 265: L360−368. Liu, Y., Feng, G.Z., Du, Q., Jin, X.X. and Du, X.R. (2017) Fine particulate matter aggravates allergic airway inflammation through thymic stromal lymphopoietin activation in mice. Molecular Medicine Reports, 16: 4201−4207. http://doi.org/ 10.3892/mmr.2017.7089 Liu, Y., Zhou, L., Wu, H., Wang, Y., Danzengluobu and Zhang, B. (2022) Role of notch signaling pathway in Muc5ac secretion induced by atmospheric PM2.5 in rats. Ecotoxicology and Environmental Safety, 229: 113052. http://doi.org/10.1016/ j.ecoenv.2021.113052 Liu, Y., Ning, Z., Chen, Y., Guo, M., Liu, Y., Gali, N.K., Sun, L., Duan, Y., Cai, J., Westerdahl, D., Liu, X., Xu, K., Ho, K.F., Kan, H., Fu, Q. and Lan, K. (2020) Aerodynamic analysis of SARS-CoV-2 in two Wuhan hospitals. Nature, 582: 557−560. Lu, X., Zhang, H., Wang, M., Qu, F., Li, J., Li, R. and Yan, X. (2021) Novel insights into the role of BRD4 in fine particulate matter airway hyperresponsiveness. Ecotoxicology and induced Environmental Safety, 221: 112440. http://doi.org/10.1016/ j.ecoenv.2021.112440 Maleki, M., Anvari, E., Hopke, P.K., Noorimotlagh, Z. and Mirzaee, S. A. (2021) An updated systematic review on the association between atmospheric particulate matter pollution and prevalence of SARS-CoV-2. Environmental Research, 195: 110898. Moorthy, B., Chu, C. and Carlin, D.J. (2015) Polycyclic aromatic hydrocarbons: from metabolism to lung cancer. Toxicological Sciences, 145: 5−15. Nor, N.S.M., Yip, C.W., Ibrahim, N., Jaafar, M.H., Rashid, Z.Z., Mustafa, N., Hamid, H.H.A., Chandru, K., Latif, M.T., Saw, P.E., Lin, C.Y., Alhasa, K.M., Hashim, J.H. and Nadzir, M.S.M. (2021) Particulate matter (PM(2.5)) as a potential SARS-CoV-2 carrier. Scientific Reports, 11: 2508. Onishi, T., Honda, A., Tanaka, M., Chowdhury, P.H., Okano, H., Okuda, T., Shishido, D., Terui, Y., Hasegawa, S., Kameda, T., Tohno, S., Hayashi, M., Nishita-Hara, C., Hara, K., Inoue, K., Yasuda, M., Hirano, S. and Takano, H. (2018) Ambient fine and coarse particles in Japan affect nasal and bronchial epithelial cells differently and elicit varying immune response. Environmental Pollution, 242(Pt B): 1693−1701. http://doi.org/10.1016/j.envpol. 2018.07.103 Prinz, A.L. and Richter, D. J. (2022) Long-term exposure to fine particulate matter air pollution: An ecological study of its effect on in Germany. Environmental COVID-19 cases and fatality Research, 204(Pt A): 111948. Rivas-Santiago, C.E., Sarkar, S., Cantarella P., 4th, Osornio-Vargas, Á., Quintana-Belmares, R., Meng, Q., Kirn,, T.J., Strickland P.O., Chow, J.C., Watson, J.G., Torres, M. and Schwander, S. (2015) Air pollution particulate matter alters antimycobacterial respiratory immunity. Infection and Immunity, 83: epithelium 2507−2517. http://doi.org/10.1128/IAI.03018-14 Sagawa, T., Honda, A., Ishikawa, R., Miyasaka, N., Nagao, M., Akaji, S., Kida, T., Tsujikawa, T., Yoshida, T., Kawahito, Y. and Takano, H. (2021) Role of necroptosis of alveolar macrophages in acute lung inflammation of mice exposed to titanium dioxide nanoparticles. Nanotoxicology, 15: 1312−1330. http://doi.org/10. 1080/17435390.2021.2022231 Sagawa, T., Tsujikawa, T., Honda, A., Miyasaka, N., Tanaka, M., Kida, T., Hasegawa, K., Okuda, T., Kawahito, Y. and Takano, H. (2021) Exposure to particulate matter upregulates ACE2 and innate interleukin-23 25

元のページ  ../index.html#31

このブックを見る