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Abstract 
An automated quality control (QC) system was developed for detecting errors in daily rain-gauge data. 

This QC system was basically designed to detect obvious errors such as clerical errors automatically and 
objectively. A total of 14 components have been developed for daily rain-gauge data, but many of the 
components can easily be applied to other weather elements such as temperature with appropriate changes in 
parameters. The authors applied the QC system to a continental-scale rain-gauge network. The results are 
illustrated herein with examples with discussions of possible causes for each kind of error. While most of the 
errors were found in data which had not been subjected to thorough QC, many basic errors were also found in 
this widely used global/regional dataset. The results given by newly proposed QC components, which use 
multiple data records at the same station but from different data sources, show that such comparison tests are 
important and work well for detecting errors such as unit misconversions. 
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1. Introduction 

 
The major focus of studies on climate change has 

shifted from describing their global average toward 
determining regional characteristics and extremes. Long- 
term gridded datasets based on observational data are 
important to many research projects, such as detection of 
human influences on climate change (e.g., Karoly et al., 
2003), validation of climate models and satellite-derived 
estimates (e.g., Caesar et al., 2006; Kummerow et al., 
2000), and evaluation of hydrological cycles. Character-
ization of regional variability and extremes in climate 
requires long-term gridded datasets with not only higher 
spatial resolution but also higher temporal resolution–at 
least daily. 

Accurate estimates in observation-based gridded 
datasets can be achieved using reliable input observa-
tional data, which are homogeneously distributed over 
the whole analysis domain with sufficient density, 
together with an advanced interpolation method. It is 
essential, in both steps, to minimize and quantify any 
uncertainty. There are many methods that interpolate 
station data onto regular grids, such as angular-distance 
weighted interpolation (Shepard 1968; Willmott et al., 
1985), Kriging (Krige 1951), optimum interpolation 
(Gandin 1963), thin plate splines and regression. Selec-

tion of the best interpolation method and its performance 
are influenced by topography and the synoptic state as 
well as spatial and temporal scales of target variables. 
This has been evaluated over certain regions (e.g., Chen 
et al., 2008; Hofstra et al., 2008). 

On the other hand, methods for quality control (QC) 
of in-situ observational data have not progressed to the 
same degree as for those for interpolation methods, 
especially for daily rain-gauge measurements. Although 
advanced and extensive QC are developed and applied in 
some global and precompiled datasets (e.g., Kunkel et al., 
2005; Ikoma et al., 2007; Durre et al., 2010; Rudolf et al., 
2010), there still seems to be no well-established and 
broadly-accepted QC method for daily precipitation 
measurements. Detecting and removing erroneous values 
in observational data are crucially important, since a wide 
range of grid-point estimates may be contaminated by 
such erroneous information through the weighting func-
tion of interpolation. It is extremely laborious to make a 
visual check and manual correction of all the tremendous 
rain-gauge observation data to create a continental-scale 
gridded daily dataset (~O (108) for the whole Asian 
region). An automated QC procedure, therefore, is 
needed for objectively detecting and removing the errors 
in observational data. Automation of the QC procedure 
not only ensures the consistency of the QC method, not 
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relying on the skills of a QC technician throughout the 
period of data record, but also has the ability to go back 
and reapply QC to the entire historical record when new 
techniques are developed. 

Through the activities for developing a long-term, 
rain-gauge based gridded dataset of daily precipitation in 
the Asian Precipitation – Highly-Resolved Observational 
Data Integration Towards Evaluation of Water Resources 
(APHRODITE Water Resources) project (Yatagai et al., 
2009; Yatagai et al., 2011), we pointed out that, although 
it is not surprising, not all observational data have 
necessarily been subjected to thorough QC (Yatagai et al., 
2010). Some kinds of obvious errors, such as zero-filled 
annual records in rainy regions, were found, especially in 
data which had not been widely distributed and were 
kindly provided to our project by national meteorological 
and hydrological services (NMHS). Such errors must be 
adequately removed or, if possible, corrected before 
applying statistical QC. 

This paper outlines an automated QC system that was 
developed by the APHRODITE project and applied to 
create gridded precipitation data. This QC system basi-
cally aims to detect suspicious values mainly due to 
human errors in daily precipitation records, but some 
components can easily be applied to other weather 
elements with little change in parameters. After briefly 
describing the QC system and rain-gauge data in Section 
2, we illustrate the results with examples in Section 3.  
A summary and concluding remarks are offered in 
Section 4. 

 
 

2. Data and Methodology 
 

2.1 Design of the QC system 
Figure 1 presents a flow chart of the QC system devel-

oped in this study. The QC system includes a total of 14 
steps, each of which will be illustrated with examples in 
the next section. The first two steps are for QC of station 
metadata, which include station names, locations, and 
time intervals and the units of measurements of observa-
tions. As for serial data, QC components are divided 
roughly into two groups: tests using single-station 
records (rectangles filled with light gray in Fig. 1) and 
tests using multiple-station records (rectangles filled with 
black). Three auxiliary sets of data are required in our QC 
system: a country code map and a digital elevation map 
that are gridded with 0.05° spatial resolution in longitude 
and latitude, and a list of country/regional records of 
target elements, as will be explained later in detail. In this 
study, we prepared a gridded country code map that is 
based on the country codes used in the Global Historical 
Climate Network (GHCN)-Daily and GHCN-Monthly 
datasets, and a gridded digital elevation map from 
GTOPO30 with 30 arc-second resolution (available 
online at http://eros.usgs.gov/#/Find_Data/Products_and_ 
Data_Available/gtopo30_info/). 

An evaluation of the QC system is important not only 
for quantifying the performance of the QC system, but 
also for identifying the rate of good observations that are 
rejected as errors (type-I errors) and the rate of errors that 
remain undetected (type-II errors). During development, 
we assessed the QC system based on the “threshold selec-
tion technique” of Durre et al. (2008), in which, for each 
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Fig. 1 Flow chart of the QC system developed in this study. Light-gray- and black-filled rectangles indicate QC steps 
using single and multiple station data, respectively, and hatched rectangles indicate internal processing. 
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QC component, all the detected error candidates are 
visually inspected to examine trends in false-positive 
rates by changing parameters. The parameters are finally 
chosen according to the intended use of the observational 
data. In our QC system, we set the parameters to minim-
ize the false-positive rate, so that gridded daily data using 
the QC data are applicable to studies on extreme events. 

 
2.2 Rain-gauge data 

We applied the QC system to daily rain-gauge data 
collected by the APHRODITE project, which consisted 
of national data directly provided by NMHS in many 
countries or through personal connections，precompiled 
datasets by other projects such as the Global Energy and 
Water Cycle Experiment (GEWEX) Asian Monsoon 
Experiment-Tropics (GAME-T), and Global Telecom-
munication System (GTS)-based global datasets such as 
Global Surface Summary of the Day (GSOD). The num-
ber of daily reports varies year to year, from around 5,000 
to around 12,000 as a minimum and maximum. A 
detailed description of the rain-gauge data is given by 
Yatagai et al. (2011). 

The target area is set within 10°W-200°E and 
30°S-90°N, corresponding to the domain of the 
APHRODITE gridded dataset (Yatagai et al., 2009). The 
analysis period is from 1950 to 2010. 

3. Quality Control Methods 
 
A total of approximately 3.26 x 108 daily records  

were examined under the QC system listed in this study. 
Table 1 lists the components in our QC system. The flag 
rate of each test is also shown. Note that these rates may 
differ substantially among datasets; precompiled datasets 
generally tend to have better quality than national data, 
and have lower flag rates. The rest of this section will be 
devoted to giving a detailed description of each QC test, 
with examples. 

 
3.1 Errors in station metadata 

The integrity of station metadata such as location is of 
the same importance as observational data. Errors in 
station location may cause a significant error in a gridded 
analysis, especially for weather elements with high 
spatial and temporal variability such as daily precipita-
tion. In our QC system, obvious errors in station location, 
such as wrong positioning outside a national boundary or 
over lakes or oceans, are detected by comparing country 
codes in station metadata with those in 0.05°-gridded 
data of GHCN country codes. By visual inspection, we 
found that many detected errors were due to clerical 
errors in which station locations were not recorded in the 
unit of decimal degrees, but in degree-minute-seconds by 

Table 1  Summary of QC tests implemented under the automated QC system developed in this study. 

Test Condition for flagging Flag rate (unit %) 

Erroneous values inherent 
particular data sources 

Daily value equals a value listed in a precomposed table ~2.5x10-2 on daily basis 

Greater values than 
national/regional record 

Daily value greater than corresponding country or world record listed in 
a precomposed table 

~1.8x10-4 on daily basis 

Contamination of different 
weather elements 

Most values in one month are not precipitation measurements ~1.0x10-4 on monthly basis

Repetition of non-zero 
constant values 

Constant daily values over 10 mm/d persist for more than four days ~8.4x10-5 on daily basis 

Repetition of zeros Frequency of zeros in the annual record is unusual compared with its 
climatological value at the target station

~2.7x10-1 on annual basis 

Duplication of monthly or 
sub-monthly record 

The temporal correlation coefficient between the records of one month 
and another month is larger than 0.3, and the number of days with equal 
values is larger than 10

~1.4x10-2 on monthly basis

Outlier Daily anomaly value from the mean calculated from data within a 15-day 
window centered on that calendar day of all available years is larger than 
nine sample standard deviations. Repeated until no outlier is detected.

~4.8x10-2 on daily basis 

homogeneity Cumulative deviations of the target station indicate a shift in the record 
of target station around a certain day

~5.0x10-2 on station basis 

Spatiotemporal isolation All the differences between daily values at the target and neighboring 
stations within 400 km are larger than the corresponding 99.99th 
percentiles of those differences, and both of the differences of target day 
from the previous and next days are larger than the corresponding 
99.99th percentiles 

~1.1x10-2 on daily basis 

Errors in unit of 
measurement 

The temporal correlation coefficient between monthly records at the 
same station from different data sources is larger than 0.4, and the 
number of days in which the ratio between two sets of data falls within a 
given interval 

~5.6x10-3 on monthly basis

Ambiguity in recorded date Two monthly records with a one-day lag at the same station from 
different data sources have a lag correlation coefficient larger than 0.3, 
and the number of days with equal values is larger than 10 

~1.9x10-1 on monthly basis
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mistake. We also found that some mislocations were 
caused by a paucity of significant-digits in longitude/ 
latitude. 

 
3.2 Errors detected in single station records 
3.2.1 Erroneous values inherent to particular data 

sources 
The probability density of daily precipitation gener-

ally shows a smooth distribution, as approximated using 
gamma, log-normal, or mixed distributions (e.g., Swift & 
Schreuder 1981; Kedem et al., 1990). However, by visual 
inspection, we found that, in some data sources, the 
probability distribution of daily precipitation was heavily 
distorted and certain values protruded unnaturally from 
the smooth background distribution. For example, we 
found that the previous Version 7 of GSOD had some 
erroneous values, e.g., 2.99 and 5.91 inch/d (corres-
ponding to 75.946 and 150.114 mm/d, respectively), 
mainly in former republics of the Soviet Union. This 
erroneous feature has been almost resolved in the latest 
Version 8. (Note that Version 8 of GSOD is used in the 
latest APHRODITE versions). 

These erroneous values are likely due to contamina-
tion of the error code, which is defined for such as miss-
ing observations in each country or station. Since it is 
very difficult to detect these errors and distinguish them 
from true precipitation records objectively, we just 
implemented a module which only flags suspicious 
values. The decision to remove these detected values as 
errors is made as the result of careful visual inspection. 
Although this method rejects some true values, the result-
ing gridded data will not be degraded as much, since true 
information is collected from neighboring stations. 

 
3.2.2 Values exceeding national/regional records 

Each daily measurement is compared with the 
national/regional record where the station belongs, and is 
judged as an error when it is greater than the national/ 
regional record. We prepared a list of precipitation 
records on a country-by-country basis by compiling 
published literature (e.g., Burt 2007). When national/ 
regional records are not available, each daily measure-
ment is compared with the world record of 1,825 mm/d 
observed at La Réunion Island (Arizona State University/ 
World Meteorological Organization 2011). (Although 
there is controversy regarding this value (Kiguchi & Oki 
2010), it is likely to have less influence on the results.) 
Note that almost all these compiled records are for 24-hr 
rainfall and have a different meaning from comparing the 
measurements of “daily” precipitation, but the influence 
of this discrepancy is considered to be small. 

 
3.2.3 Contamination with different weather elements 

Although quite rare, it is found measurements have 
been contaminated by different weather elements, such as 
temperature, wind speed or direction, or humidity. As for 
daily precipitation, it is relatively easy to detect such 
errors, since most other elements generally have fewer 
zeros in daily measurements than precipitation. In our 

system, such errors are detected on a monthly basis by 
searching for records having no zeros. It may also be 
found that daily rain-gauge measurements show not daily 
precipitation itself but the accumulated value from the 
beginning of the month. In our system, a monthly record 
in which daily values except for zeros and missing values 
increase monotonically to the end of the month is judged 
to be an accumulated precipitation record on a monthly 
basis. 

 
3.2.4 Repetition of constant values 

It is rarely found that precipitation records show a 
series of zeros or non-zero constant values. As for 
non-zero values, although depending on the resolution of 
the rain-gauge measurements, it seems unnatural that 
exactly the same amount of precipitation would be 
observed for many consecutive days. Such a repetition of 
constant values should therefore be detected as an error 
candidate. Since it is not uncommon that there is no 
rainfall for several days in most parts of the world and for 
several months in arid or semiarid regions, different 
detection criteria must be set for zero and non-zero 
repetitions. 

As for non-zero repetition, daily measurements are 
judged to be in error if constant values over 10 mm/d 
persist for more than four days. Detection of zero repeti-
tions is carried out only on annual basis. This is because, 
unlike non-zero repetition, there is insufficient evidence 
for determining how long repetition of zeros, i.e., periods 
with no rainfall, should be judged as artificial without 
other independent measurements, such as satellite obser-
vations. We currently aim only to detect annual records in 
which the frequency of zeros is unusual. Such erroneous 
annual records are likely to be caused by an inappropriate 
use of zeros in referrence to missing observations, and 
can be found by comparing the frequency of zeros in the 
suspicious record with the climatological value at the 
target station. 

 
3.2.5 Duplication of monthly or sub-monthly records 

One can find that a daily precipitation record in a 
certain month is duplicated in consecutive months or in 
the same month in following years. This indicates that 
such duplication is almost certainly due to human error. 
This error can be found by making a correlation between 
two time series. However, to complicate matters, some 
such duplications have occurred in only half a month or 
less. We therefore set an additional condition for detect-
ing duplication, using the number of days with the same 
(within the resolution of the measurements) non-zero 
values in both months. We also use temporal correlation 
so as not to detect false-positives where temporal 
variability of daily precipitation is of similar magnitude 
to the resolution of measurements. The thresholds of the 
temporal correlation coefficient and the number of days 
with equal values are set at 0.3 and 10, respectively. By 
visual inspection of all the detected records using these 
thresholds, the false-positive rate is found to be 0.78%. 

Figures 2a and b shows examples of duplication 
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detected by our QC system. We found that, while about 
3/4 of detected cases show a complete duplication of a 
monthly record, in the rest of the detected cases only a 
part of the monthly record is duplicated into the other 
month, e.g., all of the record except for a few days (Fig. 
2a), a half- or sub-monthly record (Fig. 2b), or a weekly 
record. Since temporal correlations tend to be low in the 
case of sub-monthly duplication (Fig. 2b), a test using 
only a temporal correlation coefficient as a threshold 
value may cause many more false negatives. Both 
monthly and sub-monthly duplication were found even in 
global and precompiled datasets such as GHCN-D. 

It should be noted that we cannot judge which time 
series is the true record just by looking at the results. In 
the current version of our QC system, both monthly 

records with the duplication are discarded. Other inde-
pendent data, such as measurements of other weather 
elements at the same station, satellite measurements, and 
reanalysis datasets, can be a help in making a final 
decision. 

 
3.2.6 Outliers 

Since the probability distribution of daily precipita-
tion is highly skewed toward the zero-boundary, many 
common methods for detecting outliers, which requires a 
normality in the distribution of test data (e.g., Kunkel  
et al., 2005), have some limitations. The detection of 
outliers in daily precipitation based on more robust 
techniques, e.g., using percentiles (e.g., Durre et al., 
2010) would be more appropriate for daily precipitation. 
However, percentile-based techniques may break down 
somewhat if a record includes excessive numbers of large 
erroneous values, and such cases, although rare, can be 
seen in some station records. In our system, we adopt a 
z-score-based method, with a large threshold for judging 
outliers. As shown in Fig. 3, a precipitation figure is 
judged as an outlier if the precipitation anomaly from the 
mean calculated from data within a 15-day window cen-
tered on that calendar day of all available years is larger 
than nine sample standard deviations. This test is 
repeated until no outlier is detected. Such a large thre-
shold for the z-score may result in under-detection of 
outliers, but overall it is effective when used in combi-
nation with a spatiotemporal isolation test, as will be 
described below. 

 
3.2.7 Homogeneity test 

After rejecting the errors described above, a homo-
geneity test is carried out for each station record. The test 
is based on cumulative deviations (Buishand 1982): 

 
S0* = 0, Sk* = ∑1≤i≤k (Yi – Ym) / D, k=1, 2, …, n, 
 

 

 
Fig. 2 Daily precipitation during certain months, showing 

examples of duplication in which (a) all daily data but a 
few days, and (b) the second half of the month, are 
duplicated in another month. The black and green lines 
show daily precipitation (unit: mm/d) in given months 
corresponding to the upper and lower horizontal axes, 
respectively. Shown on the upper left of each figure are 
the number of days with the same non-zero values and the 
temporal correlation coefficient without zeros. 

 

 11 JUL       16 JUL        21 JUL        26 JUL           1 AUG        6 AUG 
 2008 
                                   Date 

Fig. 3 Example of a detected outlier, where the value of 233.9 
mm/d on 26 July 2008 is judged as an outlier. The black 
line shows daily precipitation (unit mm/d). The green and 
yellow lines show the values of the mean and mean plus 
nine standard deviations, respectively, at the target station.

Date 

(a) 

(b) 
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where Yi is the precipitation amount on the k-th day, Ym 
is the temporal mean at the station, and D is the sample 
standard deviation. Note that this test requires a situation 
where, on each of the Yi’s before and after a sudden shift 
in the mean, they are stochastically independent and have 
a normal distribution with the same mean and sample 
standard deviation. It is therefore readily understood that 
this test is not the most appropriate for daily precipitation 
sequences, since the population of each day’s precipita-
tion measurement might have not only the same mean 
and standard deviation for all calendar days but also 
might not have any normality. However, we found that on 
a daily basis the test still has some efficacy in detecting 
significant inhomogeneities, as shown in Fig. 4. We 
clearly found that Sk* values monotonically increase and 
decrease before and after a certain day (around January 
12, 2004), indicating that there is a positive shift around 
that day. The mean precipitation values before and after 
the shift are 0.11 and 1.55 mm/d, respectively. In fact, 
this significant change in the mean corresponds to a 
wrong unit of measurement, as will be described below. 

 
3.3 Error detection using multiple station records 
3.3.1 Spatiotemporally isolated values 

To judge the validity of an extremely large value in 
daily precipitation data, it is useful to examine spatial 
consistency with values at neighboring stations. There 
are many statistical spatial consistency tests, in which a 
value at a target station is compared with estimated 
values from neighboring stations by regression or inter-
polation. The value is flagged if the difference between 
the two is excessively large (e.g., Eischeid et al., 1995; 
Hubbard et al., 2005; Kunkel et al., 2005). While these 
statistical techniques work well for weather elements 
with small spatial and temporal variability such as tem-
perature (Hubbard et al., 2007), it appears to be difficult 
to obtain accurate estimates for elements with high 
spatial and temporal variability such as daily precipita-
tion (Hubbard et al., 2005). 

A new percentile-based approach is proposed in this 
study and implemented in our QC system. In this test, a 
precipitation value at a target station is flagged as spati-
otemporally isolated if the difference between the target 
and neighboring station deviates excessively from its 
normal condition. Before checking isolation, we calcu-
lated daily precipitation differences between the target 
and each neighboring station through all available 
periods and then found the value that corresponded to the 
99.99 percentile of those differences. This computation is 
done only for data in which the value at the target station 
is larger than or equal to that at the neighboring station, 
and is done against up to ten neighboring stations within 
400 km. Furthermore, the 99.99th percentile value for the 
difference between precipitations at the target station for 
two successive days is also computed. Using these per-
centiles, a precipitation value at the target station is 
judged as spatiotemporally isolated when it meets the 
following conditions: 1) the precipitation is a maximum 
value in both space and time; 2) all the differences 
between the target and neighboring stations are larger 
than the corresponding 99.99th percentiles; and 3) the 
differences of the target day from the previous and the 
next days are both larger than the corresponding 99.99th 
percentiles. These conditions correspond to an evaluation 
of the precipitation differences of the target and neigh-
boring stations on the target day by using the joint 
distribution of precipitation difference in (N+2)-dimen-
sional space, where N (N ≤ 10) is the number of neighbor-
ing stations with valid data. 

Figure 5 shows an example judged as spatiotemporal 
isolation. While an extremely large value of 508.0 mm/d 
was recorded at the target station (Fig. 5c), no precipita-
tion was observed at neighboring stations either on that 
day or the previous or following days at the target station. 
This resulted in a suspicious gridded field that showed a 
bell-shaped distribution with “worm holes” (Fig. 5a). 

 
 

 

 
Fig. 4 Daily precipitation (unit: mm/d; vertical bars) and cumulative deviations 

normalized by its sample standard deviation (dimensionless and multiplied by 20; 
dotted line) at Urumqi, China from 1951 to 2009. The arrow indicates the date with 
a shift in the mean. 
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3.3.2 Errors in units of measurement 
It is almost impossible, without auxiliary data, to 

detect an erroneous record in which all the data represent 
real precipitation but are recorded in the wrong unit of 
measurement by mistake. The most likely mistakes in 
misconversion of units are between hundredths of inches 
and tenths of millimeters (i.e., 25.4 mm), and between 
millimeters (or tenths of inches) and tenths of millimeters 
(or hundredths of inches). We refer to these misconver-
sions as “factor 2.54” and “factor 10” errors, respectively. 

In our system we aim to detect only these two major 
errors, although other kinds of misconversion are likely 
to be found. 

An effective approach to detecting such errors is to 
compare the values with other available data sources. For 
each annual record at a station where two or more sets of 
data of different data sources are available, the temporal 
correlation coefficient and the number of days in which 
the ratio between the two sets of data falls within a given 
interval are calculated. The interval for detecting factor 

 

  
Fig. 5 Example of spatiotemporally isolated data. Colors in (a) and (b) show daily precipitation (unit: 

mm/d) interpolated onto 0.05 degree grids on 28th December 1964, using non-QCed and QCed data, 
respectively. Interpolation was performed using a method for creating the APHRODITE dataset 
(Yatagai et al. 2012). Locations of the rain-gauges used to make the interpolated field for both 
non-QCed and QCed data are shown by black rectangles in (b). Daily precipitation observations 
(unit: mm/d) for eleven days at the stations located at the center of (a) and (b) are shown in (c). 
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2.54 is set between 2 and 3 or 1/3 and 1/2, and that for 
factor 10 is set between 8 and 12 or 1/12 and 1/8. A preci-
pitation record in a certain year is judged as a factor 2.54 
or factor 10 error if the number of days having the ratio is 
more than 30 and the correlation coefficient is greater 
than 0.4. 

Figure 6a shows an example of a detected factor 2.54 
error. It can clearly be seen that almost all the values in 
GHCN-D (black lines) are just 2.54 times greater than the 
Indian NMHS’s data (green lines). (After further investi-
gation, we concluded that the GHCN-D data in India 
during this period were very likely to be based on the 
National Center for Atmospheric Research (NCAR) 
ds480 dataset (Shea & Sontakke 1995).) All of the factor 

2.54 errors are found from the mid-70s to the mid-80s in 
India, where both inches and millimeters were used as 
units of measurement for precipitation at some period in 
the past (Yatagai et al., 2010). An example of a detected 
factor 10 error is shown in Fig. 6b. Although the ratios 
between the two datasets are slightly more fluctuating 
than those of factor 2.54, there is no doubt the values in 
GHCN-D are ten times smaller than those in CDIAC. 
Factor 10 errors are found in whole analysis periods over 
many countries, but all the errors have been detected in 
global/precompiled datasets. 

It may be worth noting that these factor errors have 
mostly been found in global and precompiled datasets. 
This result indicates that these kinds of errors are likely to 
be caused by the misconversion of units while compiling 
precipitation data provided by the NMHS to make a 
global/regional dataset. 

 
3.3.3 Ambiguity in recorded date 

In many NMHS data, an observed daily precipitation 
value is recorded with the time stamp of the recorded day. 
In India, for example, daily precipitation is measured and 
recorded at 0830 local time, or 0300 UTC. In this case, 
precipitation data on January 2 means 24-hour accumu-
lated precipitation from 0830 LT on January 1 to 0830 LT 
on January 2. However, sometimes it is recorded as 
representing the precipitation of the “observed” day, or 
the time stamp may be changed in the process of 
compiling NMHS data to make a global/regional dataset. 
In the above case, data on January 2 represents the 
precipitation from 0830 LT on January 2 to 0830 LT on 
January 3. Even though it must be clearly documented 
and provided with data, the meaning of the time stamping 
is unfortunately unknown in some datasets, especially for 
old records. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 6 Examples of unit-of-measurement errors for (a) factor 2.54 

and (b) factor 10 problems. The black and green lines show 
daily precipitation in a certain year (unit: mm/d), for stations 
whose names and locations are on the upper and lower side 
of the figure title. The red boxes show the ratios of the two 
sets of data, except zeros (black/green; right axis). Shown on 
the upper left of each figure are the number of days in which 
the value fell a given interval (between 2 and 3 for (a), 
between 8 and 12 for (b)) and the temporal correlation 
coefficient. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7 Example of detected ambiguous time-stamping. The black 
and green lines show daily precipitation in two particular 
months (unit: mm/d), for stations whose names and 
locations are shown on the upper and lower side of the 
figure title. Shown on the upper left of the figure are the 
number of days with the same non-zero lagging values in 
this year and the temporal correlation coefficient without 
and with a one-day lag. 

(a) 

(b) 

1 JUL   6 JUL  11 JUL  16 JUL  21 JUL  26 JUL  1 AUG   6 AUG  11 AUG  16 AUG  21 AUG  26 AUG
1963 Date 
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Such ambiguous time stamping may be detected by a 
lag correlation between two or more sets of data from the 
same station from different data sources. We use the same 
method as for detecting duplication to obtain better 
results. To detect a time lag in two records, two monthly 
time series are compared at the same station from differ-
ent data sources, one of which is displaced by ±1 day. 
Figure 7 shows an example of a detected case, showing 
an obvious one-day lag between MRC and Thai NMHS 
datasets. In this case, one of the two time series should be 
considered in error, since no lag was found in other years’ 
records (not shown). Note that many of the detected lags, 
especially in global/precompiled datasets, are due to 
appropriate modification based on their objectives as 
described above. 

 
4. Concluding Remarks 

 
We developed an automated quality control (QC) 

system for detecting errors in daily rain-gauge precipita-
tion data. This QC system was basically designed to 
detect obvious errors due to human mistakes like clerical 
errors automatically and objectively. The results of 
application of the QC system to a continental-scale rain- 
gauge network were illustrated above with examples. 
Most errors were found in data provided by national 
meteorological and hydrological services (NMHS), 
which had not been widely distributed and had not been 
subjected to thorough QC. It is worth noting that many 
basic errors are also found in widely used global/regional 
datasets. 

We newly proposed some QC components and eva-
luated them by visual inspection, using multiple data 
records at the same station from different data sources. 
The results showed that such comparison tests are 
important and work well for detecting errors of unit 
misconversion and ambiguous time stamping. 

Many QC components developed in this study can 
easily be applied to other weather elements with ap-
propriate changes in parameters. For example, the 
component for detecting unit misconversion between 
millimeters and inches can also detect that between 
degrees Celsius and degrees Fahrenheit (Yasutomi et al., 
2011). 

Many kinds of errors are expected to be corrected by 
using further auxiliary data. Although limited to recent 
decades, satellite measurements are very useful for 
determining which of the repeated or duplicated records 
is true. Type-I errors (false-positives) in the results of 
spatiotemporal isolation tests can be found by using  
a database containing information on disasters, if 
available. 
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